Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning

نویسندگان

  • Yong Peng
  • Bao-Liang Lu
  • Suhang Wang
چکیده

Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Data Representation via Affinity Graph Learning

We consider the general problem of utilizing both labeled and unlabeled data to improve data representation performance. A new semi-supervised learning framework is proposed by combing manifold regularization and data representation methods such as Non negative matrix factorization and sparse coding. We adopt unsupervised data representation methods as the learning machines because they do not ...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

Semi-Supervised Dimensionality Reduction of Hyperspectral Image Based on Sparse Multi-Manifold Learning

In this paper, we proposed a new semi-supervised multi-manifold learning method, called semisupervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploits both the labeled and unlabeled data to adaptively find neighbors of each sample from the same manifold by using an optimization program based on sparse representation, and naturall...

متن کامل

Sparse Geodesic Paths

In this paper we propose a new distance metric for signals that admit a sparse representation in a known basis or dictionary. The metric is derived as the length of the sparse geodesic path between two points, by which we mean the shortest path between the points that is itself sparse. We show that the distance can be computed via a simple formula and that the entire geodesic path can be easily...

متن کامل

Low-Rank Coding with b-Matching Constraint for Semi-Supervised Classification

Graph based semi-supervised learning (GSSL) plays an important role in machine learning systems. The most crucial step in GSSL is graph construction. Although several interesting graph construction methods have been proposed in recent years, how to construct an effective graph is still an open problem. In this paper, we develop a novel approach to constructing graph, which is based on low-rank ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2015